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Abstract 
 
A general multi-body formulation to analyze the tolerance effects on the statistical property variations of natural fre-

quencies of multi-body systems undergoing constant rotational motion is proposed in this paper. To obtain the toler-
ance effects, Monte-Carlo simulation method is conventionally employed. However, the Monte-Carlo simulation has 
serious drawbacks; spending too much computation time for the simulation and achieving very slow convergence 
around some dynamically unstable regions. To resolve such problems, a method employing analytical sensitivity in-
formation is suggested in this paper. To obtain the sensitivities of natural frequencies the eigenvalue problem should be 
differentiated with respect to a design variable. The sensitivities of mass and stiffness matrices should be calculated at 
the dynamic equilibrium. By employing the sensitivities of natural frequencies along with the tolerance of the design 
variable, the statistical property variations of the natural frequencies can be calculated.  
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1. Introduction 

In a state of dynamic equilibrium of a multi-body 
system, some of the generalized coordinates remain 
constant while the others vary with time. The dy-
namic equilibrium states often occur in multi-body 
systems undergoing constant rotational motion. Such 
systems can be found in several rotating systems such 
as a governor mechanism and turbo-machineries-
machinery. A formulation to obtain the dynamic equi-
librium position of a multi-body system undergoing 
rotational motion was presented by Choi et al. [1]. 
The modal characteristics of a multi-body system in 
dynamic equilibrium differ from those of the same 
system in static equilibrium. Methods to find the mo-
dal characteristics of a multi-body system in static 

and dynamic equilibriums were proposed by Sohoni 
and Whitesell [2] and Choi et al. [3], respectively. To 
design a multi-body system, the static and the dy-
namic equilibriums and the corresponding modal 
characteristics at the equilibrium position need to be 
found effectively as well as accurately. Very often, 
engineers also need to find the tolerance effects of 
some design parameters on the statistical property 
variations of modal characteristics of multi-body sys-
tems. Such information is often crucial for the robust 
design of the a mechanical system. 

The effects of various manufacturing tolerances 
and errors on the motion errors of mechanical systems 
have been studied by many previous engineers. 
Hartenberg and Denavit [4] first addressed the issue 
of mechanical errors in linkages. They estimated the 
mechanical errors based on the maximum allowable 
tolerances of the link lengths in four-bar linkages. 
Their approach employed a deterministic method and 
offered a “worst case” analysis of tolerance. Garrett 
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and Hall [5] developed a statistical method to deter-
mine mechanical errors due to tolerances and clear-
ances and represented the errors as mobility bands. 
They carried out Monte Carlo simulations for a four-
bar linkage with the method. Dubowsky and Freuden-
stein [6] developed a concept of impact pair and 
Dubowsky [7] later presented a prediction model for 
the dynamic effects of clearances in planar mecha-
nisms through the use of the impact pair concept. Lee 
[8] proposed an effective link model and an analytic 
method which uses the first-order Taylor series ex-
pansion. Lee and Gilmore [9] later considered the 
uncertainty due to pin location, link length tolerance, 
and radial clearance tolerance as an effective variation 
on the link length. 

Most of the studies mentioned so far focus on the 
joint clearance and contact modeling issues and little 
work has been done to analyze the modal characteris-
tic variations due to design variable tolerances. The 
purpose of this study is to propose a systematic 
method to find the statistical property variations of 
natural frequencies due to design variable tolerances 
for multi-body systems in dynamic equilibrium. The 
statistical property variations of natural frequencies 
are calculated with the sensitivities of natural fre-
quencies, which can be obtained by using the sensi-
tivities of mass and stiffness matrices. A general 
multi-body formulation is employed to obtain the 
sensitivities of mass and stiffness matrices. 
 

2. Equations of motion 

The most general form of equations of motion for a 
constrained multi-body system expressed by employ-
ing Cartesian coordinates is written (see [10]) as fol-
lows: 

 
T+ =xMx Φ λ Q   (1) 

 
where M  denotes the mass matrix, Q  denotes the 
generalized force vector, xΦ  denotes the Jacobian 
matrix obtained by differentiating the constraint equa-
tions Φ  with respect to Cartesian coordinates x , 
and λ  denotes the Lagrange multiplier vector. 

Since the relative configuration of a multi-body 
system becomes stationary in a dynamic equilibrium 
state, it is more efficient to employ a set of relative 
coordinates to describe the system, which is hereafter 
denoted as q . To derive the equations of motion for 
a constrained multi-body system by employing a set 

of relative coordinates, the following equation, which 
is often called the velocity transformation (see [11, 
12]), is employed. 

 
=x Bq   (2) 

 
where B  denotes the velocity transformation matrix, 
x  denotes the system Cartesian velocity vector and 
q  denotes the relative velocity vector. 

The relative coordinates q  can be partitioned into 
Pq  (the coordinates which involve with constant 

rotational motion) and Rq  (the rest of the relative 
coordinates) as follows: 

 
TT T

P R⎡ ⎤= ⎣ ⎦q q q   (3) 

 
Now the Cartesian velocity vector x  can be rep-

resented in terms of Pq  and Rq  as follows: 
 

P P R R= +x B q B q   (4) 
 

where PB  and RB  denote the sub-matrices associ-
ated with the coordinates Pq  and Rq . Thus, B  is 
composed of PB  and RB  as follows: 

 

[ ]P R=B B B   (5) 

 
By taking the time derivative of Eq. (4) one obtains 
 

P P R R P P R R= + + +x B q B q B q B q   (6) 
 
Substituting Eqs. (6) into Eq. (1) and pre-

multiplying the result by T
RB , the equations of mo-

tion for an open loop system can be obtained as fol-
lows: 

 

R =
* *M q Q   (7) 

 
where 

 
T
R R=*M B MB   (8) 

T
R P P P P R R= − − −*Q B (Q MB q MB q MB q )   (9) 

 
3. Deriving linear equations of motion at the 

dynamic equilibrium state 

At the dynamic equilibrium state Rq  and its time 
derivatives Rq  become zero. Also Pq  becomes 
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zero since Pq  is prescribed constant. So, from Eq. 
(7), the following dynamic equilibrium equation can 
be obtained. 

 
T
R P P − =B (MB q Q) 0   (10) 

 
Since the above equation is nonlinear in terms of 

Rq , it can be solved by employing an iterative nu-
merical scheme such as the Newton-Raphson method.  

Now, Eq. (7) can be expressed in a more general 
form as follows: 

 
( ) 0R R R Pg t =q ,q ,q ,q ,   (11) 

 
If Equation (11) is linearized at the dynamic equi-

librium positions (which is denoted as *
Rq ) the fol-

lowing equation can be obtained. 
 

* *

0
R R

R R
R R

g ggδ δ δ∂ ∂= + =
∂ ∂

q q

q q
q q

  (12) 

 
Eq. (12) may be rewritten in a familiar form as 
 
ˆ ˆ 0R Rδ δ+ =M q K q   (13) 

 
where M̂  and K̂ , respectively, denote the lin-
earized mass and stiffness matrices, that are written as 

 

*
*

ˆ
R

R

T
R R

R

g∂= =
∂ q

q

M B MB
q

  (14) 

*
*

ˆ
R

R

T
R P P

R R

g∂ ∂= = −
∂ ∂ q

q

K B [MB q Q]
q q

  (15) 

 

4. Analysis of the tolerance effect on the natu-
ral frequency variance using the sensitivity 
information 

An Eigenvalue problem of an undamped system 
can be written as follows: 

 
ˆ ˆ

j j jφ λ φ=K M   (16) 

 

where jφ  denotes the normalized mode vector and 
jλ  denotes the eigenvalue. 
Now differentiating Eq. (16) with respect to a de-

sign variable b , one may obtain obtains 

ˆ ˆˆ ˆ( ) ( )

ˆ

j
j j j

j
j

b b b

b

φ
λ λ φ

λ
φ

∂ ∂ ∂− = − −
∂ ∂ ∂

∂
+
∂

K MK M

M
  (17) 

 
Pre-multiplying Eq. (17) by T

jφ  and using the 
normalized condition ˆ 1T

j jφ φ =M , the sensitivity of 
an eigenvalue jλ  for a design variable b can be 
obtained as follows: 

 
ˆ ˆ

( )j T
j j jb b b

λ
φ λ φ

∂ ∂ ∂= −
∂ ∂ ∂

K M   (18) 

 
Since 2

j jλ ω= , the sensitivity of a natural fre-
quency jω  for a design variable b  can be obtained 
as follows: 

 
ˆ ˆ1 ( )

2
j T

j j j
jb b b

ω
φ λ φ

ω
∂ ∂ ∂= −
∂ ∂ ∂

K M   (19) 

 
When a set of samples of a design variable has a 
normal distribution with 99.73% confidence interval, 
the variance of the natural frequency (see Ref. [8]) 
can be obtain obtained as 

 
2

2 21
9

jd
T

db
ω

σ ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  (20) 

 
where T  denotes the tolerance of the design vari-
able b and σ  denotes the standard deviation of the 
natural frequency jω . 
 

5. Numerical examples 

5.1 Rotating simple pendulum 

Fig. 1 shows the rotating simple pendulum under-
going rotational motion with constant angular veloc-
ity Ω . The pendulum (mass m=3kg and length 
L=1m) is connected to a vertical shaft by a pin joint 
as shown in the figure. When the vertical shaft rotates 
with a constant angular velocity, θ  remains constant 
at the dynamic equilibrium position. Fig. 2 shows the 
dynamic equilibrium value of θ  versus the angular 
velocity. Until the shaft angular velocity exceeds the 
value of 3.835rad/s, the dynamic equilibrium value of 
θ  remains zero, since the virtual moment generated 
by the gravitational force is larger than that generated 
by the centrifugal force. Fig. 3 shows the natural fre-
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quency versus the angular velocity. As the shaft angu-
lar velocity increases, the natural frequencies de-
creases first and then increases. Especially, the natural 
frequency reaches zero at 3.835rad/s since the system 
stiffness becomes zero at the angular velocity. Fig. 4 
shows the mean value of the natural frequency versus 
the angular velocity when the length of bar has the a 
normal distribution with 99.73% confidence interval. 
Three tolerances are considered: 3.0%, 6.0% and 
12.0%. As shown in the plot, there is little difference 
between the results obtained by the proposed method 
and the analytical solution for the three cases of toler-
ances. 

Fig. 5 shows the a comparison of standard devia-
tions of the natural frequency obtained by three meth-
ods: the proposed method, Monte-Carlo method, the 
analytical method. For the analysis, the length of the 
pendulum is assumed to have the a tolerance of 3%. 

 
 

 
 
Fig. 1. Rotating simple pendulum system. 
 
 

 
 
Fig. 2. Dynamic equilibrium value of θ  versus the angular 
velocity. 

 
 
Fig. 3. Natural frequency versus the angular velocity. 
 
 
 

 
 
Fig. 4. Mean value of natural frequency versus the angular 
velocity. 
 
 
 

 
 
Fig. 5. Comparison of standard deviations obtained by the 
proposed method and the Monte-Carlo method. 
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Table 1. Comparison of CPU time between the proposed 
method and the Monte-Carlo method. 
 

Method CPU Time (sec) Ratio 

Proposed Method 1.328 1 

Monte-Carlo Method 1565.797 
(0.435 hours) 1179 

 

 
 
Fig. 6. Comparison of the standard deviations with three 
different tolerances. 
 

 
 
Fig. 7. Rotating double pendulum system. 

 
As shown in the figure, the standard deviation be-
comes large around the angular velocity 3.835rad/s at 
which the natural frequency becomes null. The results 
obtained by the analytical solution are in good agree-
ment with those obtained by the proposed method. 
However, they do not match to the results obtained by 
the Monte-Carlo method around the angular velocity 
3.835rad/s.  

  
Fig. 8. Equilibrium angles versus the angular velocity. 
 
 

Fig. 6 shows the standard deviation of natural fre-
quency versus the angular velocity with three cases of 
tolerances: 3.0%, 6.0% and 12.0%. As inspected in-
tuitively, the deviation increases as the tolerance in-
creases.  

Table 1 shows the comparison of CPU time be-
tween the proposed method and the Monte-Carlo 
method. A standard Pentium PC is employed for the 
calculation. As shown in the table, the computation 
time consumed by the proposed method is less than a 
thousandth of that consumed by the Monte-Carlo 
method. 
 
5.2 Rotating double pendulum 

Fig. 7 shows a rotating double pendulum system 
which rotates with a constant angular velocity. The 
mass and the length of the two pendulums which are 
mutually connected by a rotational joint are 3kg and 
1m, respectively. The first pendulum is also con-
nected to the vertical shaft which rotates with a con-
stant angular velocity relative to the ground. The an-
gle between the vertical shaft and the first pendulum 
is denoted as 1θ  and the angle between the first pen-
dulum and the second pendulum is denoted as 2θ . 

Fig. 8 shows the values of the two angles at the dy-
namic equilibrium state versus the angular velocity. 
As shown in the figure, those two equilibrium angles 
remain 0 until the angular velocity reaches 2.679 rad/s. 
After exceeding the angular velocity, the virtual mo-
ment generated by the centrifugal force becomes la-
ger larger than that generated by the gravitational 
force. As the angular velocity increases, those two 
angles converge to / 2π  radian. 
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Fig. 9. Variations of natural frequencies versus the angular 
velocity. 
 

 
 
Fig. 10. Mean values of natural frequencies versus the angu-
lar velocity. 

 
Fig. 9 shows the variations of the first and the sec-

ond natural frequencies versus the angular velocity. 
The natural frequencies decrease first, then increase. 
The driving angular velocity is the same as the natural 
frequency on the dotted red line. As shown in Fig. 9, 
the angular velocity matches to the first natural fre-
quency at 1.895rad/s. Since a resonance may occur at 
the angular velocity, it is often called a critical angu-
lar velocity. As shown in the figure, the first natural 
frequency becomes 0 when the angular velocity be-
comes 2.679 rad/s. So the system becomes unstable at 
the angular speed, too. 

Fig. 10 shows the mean values of the first and the 
second natural frequencies obtained by the proposed 
method and the Monte-Carlo simulation. For the 
Monte-Carlo simulation 3,000 samples were em-
ployed to draw the figure. As shown from the figure,  

 
 
Fig. 11. Comparison of the first natural frequency standard 
deviations obtained by the proposed method and the Monte-
Carlo method. 
 

 
 
Fig. 12. Comparison of the second natural frequency standard 
deviations obtained by the proposed method and the Monte-
Carlo method. 

 
the two methods provide almost identical results. It 
can be also observed from the results that the mean 
values of the natural frequencies rarely vary as the 
tolerance increases.  

Fig. 11 and Fig. 12 show the standard deviations of 
the first and the second natural frequencies versus the 
angular velocity, respectively. The results obtained by 
the proposed method and the Monte-Carlo method 
are in a good agreement, except the specific angular 
velocity region (near 2.679 rad/s). It was shown from 
theThe previous results showed that the first natural 
frequency becomes null at the angular velocity. Espe-
cially, as shown in Fig. 11, significant error occurs for 
the first natural frequency standard deviation at the 
angular velocity. For the second natural frequency 
standard deviation, however, the error is not signifi-
cant. As inspected intuitively, the natural frequency  
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Table 2. Comparison of CPU time between the proposed 
method and the Monte-Carlo method. 

 
Method CPU Time (sec) Ratio 

Proposed Method 11.297 1 

Monte-Carlo Method 15979. 
(4.4386 hours) 1414 

 
standard deviations increase in proportional to the 
tolerance of the design variable. Incidentally, it can be 
also found that the error remains insignificant at the 
critical angular velocity where the first natural fre-
quency matches to the angular velocity.  

Table 2 shows the a comparison of CPU time be-
tween the proposed method and the Monte-Carlo 
method. It can be found from the table that the pro-
posed method is computationally much more efficient 
than the Monte-Carlo method. One should note that 
the computation time for the double pendulum system 
is more than 4 hours. So if the Monte-Carlo method is 
employed for a more practical multi-body system 
example, the computational burden becomes prohibi-
tive.  
 

6. Conclusions 

The following summary and conclusions could be 
obtained from this study. 

• A general multi-body formulation to investi-
gate the design variable tolerance effect on the 
statistical property variations of natural fre-
quencies is proposed by employing the sensi-
tivity information.  

• The proposed method is computationally much 
more efficient than the Monte-Carlo method 
so that it can be employed for more practical 
design problems of constrained multi-body 
systems. 

• Compared to the Monte-Carlo method, the 
proposed method can always provide more ac-
curate results. It was shown that the Monte-
Carlo method often provides erroneous results 
around a certain angular velocity region 

 

References 

[1] D. H. Choi, J. H. Choi, J. H. Park and H. H. Yoo, 
“Steady-State equilibrium analysis of a multibody  

system driven by constant generalized speeds,” 
KSME International Journal, 16 (10) (2002) 1239-
1245. 

[2] V. N. Sohoni and J. Whitesell, Automatic lineariza-
tion of constrained dynamical models, ASME Jour-
nal of Mechanisms, Transmissions, and Automation 
in Design , 108 (1986), 300-304. 

[3] D. H. Choi, J. H. Park and H. H. Yoo, Modal analy-
sis of constrained multibody systems undergoing 
rotational motion, Journal of Sound and Vibration, 
208 (1) (2005), 63-76. 

[4] R. S. Hartenberg and J. Denavit, Kinematic synthe-
sis of linkages, McGraw-Hill, New York, USA, 
(1964).  

[5] R. E. Garret and A. S. Hall, Effects of tolerance and 
clearance in linkage design, ASME Journal of Engi-
neering for Industry, 91 (1969) 198-202. 

[6] S. Dobowsky and F. Freudenstein, Dynamic analy-
sis of mechanical systems with clearances, Part 1: 
Formulation of dynamic model, ASME Journal of 
Engineering for Industry, 90 (1971) 305-316. 

[7] S. Dobowsky, On predicting the dynamic effects of 
clearances in planar mechanisms, ASME Journal of 
Engineering for Industry, 96 (1974) 317-323. 

[8] S. J. Lee, Performance reliability and tolerance 
allocation of stochastically defined mechanical sys-
tems, The Pennsylvania State University, Ph.D. 
Dissertation, (1989). 

[9] S. J. Lee and B. J. Gilmore, The determination of 
the probabilistic properties of velocities and accel-
erations in kinematic chains with uncertainty, 
ASME Journal of Mechanical Design, 113 (1991), 
84-90. 

[10]   E. J. Haug, Computer-aided kinematics and dy-
namics of mechanical systems, VolumnVolume I: 
Basic Method, ALLYN AND BACON (1989). 

[11]   S. S. Kim and M. J. Vanderploeg, A general and 
efficient method for dynamic analysis of mechani-
cal systems using velocity transformations, ASME 
Journal of Mechanisms, Transmissions and Auto-
mation in Design, 108 (1986) 176-182. 

[12]   D. S. Bae and E. J. Haug, A recursive formulation 
for constrained mechanical system dnamics : Part I. 
open loop systems, Mech. Struct. & Mach., 15 (3) 
(1987) 359-382. 

[13]   C. S. Rudisill, 1974, Derivatives of eigenvalues 
and eigenvectors of a general matrix, AIAA Journal, 
12 (1974) 721. 



2170  S. M. Eom et al. / Journal of Mechanical Science and Technology 22 (2008) 2163~2170 
 

 
 

Seung Man Eom graduated 
from the Department of Me-
chanical Engineering at Incheon 
University in 2005 and received 
his master degree from the De-
partment of Mechanical Engi-
neering at Hanyang University 
in 2007. He is currently working 

as a Researcher of Aircraft Development Team in 
KIAT(Korea Institute of Aerospace Technology, 
Koreanair), DaejeonDeajeon, Korea. 
 

Bum Suk Kim graduated from 
the School of Mechanical Engi-
neering at Hanyang University in 
2006 and received his master 
degree from the same depart-
ment in 2008. He is currently 
working as a Ph.D. student in the 

School of Mechanical Engineering in Hanyang Uni-
versity, Seoul, Korea. 

Hong Hee Yoo graduated from 
the Department of Mechanical 
Design and Production Engi-
neering at Seoul National Uni-
versity in 1980 and received his 
master degree from the same 
department in 1982. He received 

his Ph.D. degree in 1989 from the Department of 
Mechanical Engineering and Applied Mechanics in 
the University of Michigan at Ann Arbor, U.S.A. He 
is currently working as a professor in the School of 
Mechanical Engineering in Hanyang University, 
Seoul, Korea. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


